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Open Access Abstract

The Yamuna River, crucial for the water supply of several cities, faces a serious pollu-
tion problem due to industrial discharges, threatening both the health of ecosystems 
and the well-being of communities that depend on this resource. Current methods 
for assessing water quality, especially the quality index, are expensive and require 
considerable data collection time. In turn, traditional predictive models often fail to 
adapt to environmental changes, underlining the need for more advanced approa-
ches that enable accurate and timely predictions of the water quality index, critical 
for effective water resource management.

In this research, machine learning techniques are used to make predictions on the 
water quality index, highlighting the limitations of existing models. The potential of 
various approaches is examined and an innovative hybrid methodology is proposed 
that combines Latent Semantic Analysis (LSA) for dimensionality reduction with 
Extreme Gradient Boosting, with the aim of improving the accuracy of predictions.

To conduct the study, water samples are collected from nine locations along the 
Yamuna River, focusing on industrial areas, and various parameters are analyzed. 
The calculated water quality index is then evaluated using various machine learning 
models as well as the proposed hybrid methodology. The evaluation criteria focus 
on accuracy, responsiveness, and the ability to predict the water quality index using 
limited but meaningful parameters.

The research results demonstrate the effectiveness of the hybrid methodology in 
predicting the water quality index, achieving a remarkable maximum accuracy of 
95.2%, which is higher than other advanced models and techniques. This study 
provides valuable insights for water quality assessment, presenting an efficient and 
accurate data-driven approach essential for sustainable water resource management.
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1. Introduction:

Water, as a vital component of our environment, 
plays a critical role in sustaining life and suppor-
ting various ecosystems. In an era marked by rapid 
urbanization, industrialization, and agricultural 
expansion, ensuring the availability of clean and 
safe water has become an imperative for global well-
being. Proximity to rivers has been advantageous, 
providing water for various purposes. However, 
balancing river water use is crucial for sustainable 
resource management and protecting ecosystems. 
Pollution sources, including industrial discharges, 
agriculture, and sewage, vary by región [1, 3]. The 
River Yamuna faces severe pollution from industrial 
units in Delhi, Faridabad, Mathura, and Agra, with 
around 359 units releasing untreated wastewater. 
The Yamuna River in the Uttarkashi district of 
Uttarakhand. It’s vital for several cities supporting 

drinking water, irrigation, and industries. Efforts are 
underway to address pollution through measures 
such as wastewater treatment, environmental regu-
lations, and public awareness [4, 5]. Preserving the 
Yamuna River requires effective pollution control, 
wastewater treatment, and public involvement for 
sustainable use. Different regions have developed 
water quality indices tailored to their needs, essen-
tial for summarizing data and guiding pollution 
control measures.

The Water Quality Index (WQI) serves as a critical 
numerical index that assesses overall water quality 
conditions, to implement pollution control measures 
for safeguarding the Yamuna River ecosystem and 
human health. A crisp knowledge of water quality 
is essential, thus playing a pivotal role in evaluating 

Resumen

El río Yamuna, crucial para el abastecimiento de agua de varias ciudades, se enfrenta a un grave problema de 
contaminación debido a los vertidos industriales, lo que amenaza tanto la salud de los ecosistemas como el bien-
estar de las comunidades que dependen de este recurso. Los métodos actuales para evaluar la calidad del agua, 
especialmente el índice de calidad, son costosos y requieren un considerable tiempo de recopilación de datos. A 
su vez, los modelos predictivos tradicionales a menudo no logran adaptarse a los cambios ambientales, lo que 
subraya la necesidad de enfoques más avanzados que permitan predecir de manera precisa y oportuna el índice 
de calidad del agua, fundamental para una gestión eficaz de los recursos hídricos.

En esta investigación, se utilizan técnicas de aprendizaje automático para realizar predicciones sobre el índice 
de calidad del agua, destacando las limitaciones de los modelos existentes. Se examina el potencial de diversos 
enfoques y se propone una metodología híbrida innovadora que combina el análisis semántico latente (LSA) 
para la reducción de la dimensionalidad con Extreme Gradient Boosting, con el objetivo de mejorar la precisión 
de las predicciones.

Para llevar a cabo el estudio, se recopilan muestras de agua en nueve ubicaciones a lo largo del río Yamuna, 
centrándose en áreas industriales, y se analizan diversos parámetros. Posteriormente, el índice de calidad del 
agua calculado se evalúa mediante varios modelos de aprendizaje automático, así como la metodología híbrida 
propuesta. Los criterios de evaluación se centran en la precisión, la capacidad de respuesta y la habilidad para 
prever el índice de calidad del agua utilizando parámetros limitados pero significativos.

Los resultados de la investigación evidencian la efectividad de la metodología híbrida en la predicción del índice 
de calidad del agua, alcanzando una notable precisión máxima del 95,2 %, superior a la de otros modelos y 
técnicas avanzadas. Este estudio proporciona valiosas perspectivas para la evaluación de la calidad del agua, 
presentando un enfoque basado en datos que resulta eficiente y preciso, esencial para la gestión sostenible de 
los recursos hídricos.
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the state of various water bodies to improve their 
management. Computation of the Water Quality 
Index involves considering multiple parameters 
such as pH, dissolved oxygen, turbidity, chemical 
oxygen demand (COD), biochemical oxygen demand 
(BOD), temperature, and the presence of pollutants, 
necessitating on-site data collection. However, the 
earlier method of computing various parameters 
through samples was labor-intensive, and was asso-
ciated with high financial costs [6]. Therefore, the 
WQI is indispensable for ensuring the repeated and 
effective monitoring of water body quality, especially 
in regions prone to frequent pollution. So, for early 
identification of such sources [7] and to predict WQI 
is the one of the majors concerned of the researcher 
in the past. 

This work endeavors to explore several techniques to 
predict Water Quality Index, focussing on addressing 
the limitations of current models. Machine learning, 
a subfield of artificial intelligence, has demonstrated 
its efficacy in pattern recognition, data analysis, and 
prediction across diverse domains. By leveraging the 
capabilities of machine learning, this study aspires 
to enhance the accuracy and timeliness of WQI 
predictions, contributing to more effective water 
resource management strategies [8].

This research aims to evaluate quality of water in the 
surroundings of industrial areas along the Yamuna 
River in Delhi, employing various parameters. The 
collected data is then utilized to compute WQI 
by employing numerous models namely, logistic 
regression (LR), Decision Tree (DT), Support Vector 
Machine (SVM), Naïve Bayes (NB), and XGBoost. 
To enhance the results, a novel hybrid methodology 
is proposed, integrating Latent Semantic Analysis 
and Extreme Gradient Boosting. Latent Semantic 
Analysis performs dimensionality reduction on 
the dataset features through singular value decom-
position, enhancing feature representation. The 
improved features are then fed into the Extreme 
Gradient Boosting technique for further prediction. 
Extreme Gradient Boosting (XGBoost) is an opti-
mized approach that takes inputs from multiple weak 
models to yield a robust prediction. The proposed 
hybrid approach achieves a maximum accuracy of 
95.2%, outperform other state-of-the-art techniques. 
Notably, this high accuracy is achieved using only 

three of the most significant parameters, showca-
sing the efficacy of the proposed methodology.

The main contribution of this work includes:

•	 Last 8 years’ data (2013- 2021) is gathered from 
CPCB and converted into machine readable 
format for the further processing.

•	 WQI is calculated on 9 sites of Delhi on four 
parameters such as pH, DO, BOD, COD.

•	 Various models such as LR, NB, SVM, DT and 
XGBoost are applied.

•	 A hybrid approach based on LSA (Latent 
Semantic Analysis) and XGBoost is proposed 
based on various parameters of water.

Related work

This section presents the work done on prediction 
of WQI.

Ahmed et.al. [6] explored various techniques based 
on Four input parameters. The results depict that 
gradient boosting was most efficient in prediction 
of WQI, and the multi-layer perceptron attains 
highest WQC classification accuracy at 85.07%. This 
proposed methodology achieved significant accu-
racy using minimal parameters set.

In another work, Wang et.al. [9] Focused on model 
stacking approach. Microbial contamination in beach 
water poses risks to swimmers due to exposure to 
harmful pathogens. An ensemble approach known as 
model stacking was proposed for water quality assess-
ment for beaches. Outputs from five machine learning 
models were fed as an input to another model. In this, 
accuracy rankings for the stacking model remained 
consistent for first two years, with average accuracy 
of 78%, 81%, and 82.3% respectively. Silberg et al. [10] 
utilized an approach that combined attribute-realiza-
tion with SVM algorithm for Chao Phraya River. The 
study, based on a historical dataset spanning 2008 – 
2019 and encompassing various parameters, followed 
a four-step process: data pre- processing, attribute 
evaluation, exploration of mathematical functions. 
The study observed that different combinations of 
attributes and mathematical functions resulted in 
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varied performance. Validation of the approach 
confirmed that proposed method proved to be a robust 
method for classifying river water quality, achieving 
an accuracy range of 0.86 to 0.95 when using three 
to six attributes. This underscores the effectiveness of 
the AR-SVM approach in accurately categorizing the 
Chao Phraya River’s water quality based on diverse 
attributes.

Yilma et al. [11] sought to present a comprehensive 
assessment of pollution levels in The Little Akaki 
River. The approach employed neural network on 
twelve parameters gathered from 27 sites. The results 
indicated that, with the exception of one upstream 
site, all sampling locations were classified under the 
poor water quality category.

In their study, Bui et al. [12] employed both standa-
lone algorithms and data-mining algorithms on Iran 
Water Quality Index using six years of monthly data 
(2012 to 2018) in the Talar catchment. Hybrid algori-
thms demonstrated an enhancement, although this 
improvement was not uniform across all cases.

In their work, Ding et al. [13] introduced a hybrid 
intelligent algorithm. The initial application of PCA 

serves to reduce data dimensionality by compressing 
23 factors into 15 indices following by Genetic algo-
rithm to enhance the dimensions of the BPNN. The 
results attain an overall prediction rate of approxi-
mately 91%.

In their study, Azad et al. [14] explored nature 
inspired and fuzzy systems to predict water quality 
in Gorganroud River water. ANFIS-DE model in 
accurately predicting Electrical 

Conductivity and Total Hardness in Gorganroud 
River water.

Zhang et al. [15] introduced a hybrid model named 
HANN, to anticipate the overall performance of 
Drinking Water across China. The approach utilized 
monthly data from 45 DWTPs. The resulting HANN 
model demonstrated excellent performance in simu-
lating training datasets, exhibiting enhanced predic-
tive accuracy.

Further, Hassan et al. [8] employed several techni-
ques to classify water quality across diverse locations 
in India. The previous studies are compared and are 
presented in Table 1.

Table 1. Comparative analysis of existing state-of-the-art techniques

Author and Year Machine learning 
model used Dataset Used Water_ 

Parameters
Evaluation 

Metrics Results

Ding et.al., 2014, 
[13] PCA GA ,BPNN River water

Total 23 
Factors aggregated 

into 15 parameters.
Accuracy Total Overall 

prediction rate =91%

Yilma et.al., 2018 
[11] ANN Little Akaki River 12 water parameters R2 R2 of 0.95 was 

attained

Azad et.al. 2018. 
[14]

GA, Ant Colony 
Optimization and 

Differential Evolution

Gorganroud  
River water

Electrical Conductivity, 
Sodium Absorption 

Ratio,Total Hardness
R2, RMSE, MAPE ANFIS exhibited the 

best performance

Ahmed et.al., 2019, 
[6]

Polynomil regression, 
GB, MLP - Temperature, Turbidity, 

pH, TDS MAE, Accuracy
MAE of 1.9642 and 

2.7273 for WQI  
Accuracy= 85.07%

Zhang et.al., 2019 
[15]

Hybrid Statistical Model 
HANN, Integrating, 

ANN and GA

DWTPs across 
China

Temperature, Chemical 
Oxygen EC,CE

Mean Squared 
Error

Results indicated a close 
connection between 

DWTP 
water production and 

wáter quality and opera-
tional parameters
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Author and Year Machine learning 
model used Dataset Used Water_ 

Parameters
Evaluation 

Metrics Results

Bui et.al., 2020 [12] RF, M5P, Data-Mining 
Algorithms

Talar catchment 
of Iran

All	 wáter quality 
parameters

Pearson correlation 
coefficients

FC and TS had the 
greatest and least 

impact.

Wang et.al. 2021 [9] Model Stacking Beaches Dataset Dissolved Solid, pH, 
Temperature, BOD Accuracy

Accuracy	 of 78%, 81%, 
and	 82.3% 

respectively.
Solberg et.al., 2021, 

[10] AR and SVM Chao Phraya river NH3-N, TCB, FCB, BOD, 
DO, and Salanity Accuracy Attained an accuracy of 

0.86-0.95.

Hassan et.al., 2021, 
[8]

RF, NN, MLR, SVM, 
and BTM

Various locations 
in India DO, BOD, EC Kappa coefficient, 

Accuracy

The	 results highli-
ghted several influen-

cing factors.

2. Methodology 

The proposed methodology is divided into various 
steps. Steps are explained below in detail;

Dataset Collection

To perform the data analysis, data is gathered from 
the government Central Pollution Control Board 
for different locations of Delhi Region. Data is 
provided for 9 regions/area for 4 parameters for the 
years 2013 to 2021. Various location is represented 
trough L1 to L9. The 9 locations of Yamuna River 
are presented in fig 1.

Fig 1. Yamuna River Water Stations

Data Preprocessing

For the collected dataset, data is pre-processed by 
checking for missing values. Then, all the water 
quality parameters are normalized using min-max 
normalization approach. Then, normalized para-
meters are passed further for computation of Water 
Quality Index and further processing [16-17].

Water Quality Index (WQI)

The standard values the WQI is as per CPCB Delhi 
depicted in Table 2.

Table 2. WQI values and its Classification

WQI Range WQI Classification

0-25 Excellent

26-50 Good

51-75 Poor

76-100 Very Poor

Above 100 Not fit for Drinking
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Fig.2 presents the framework of the proposed approach and various components of the 
framework are that are explained further

Data Preprocessing

ML Algorithms Applied Split dataset

Handling 
missing 
values

Logistic 
Regression DT

NB
SVM XGBoost

Train data Test data

Dataset Splitting

WQI 
Calculation

Histogram of 
Dataset for WQI

Dataset Collection

Modelling 
on Data

Resulting 
Model

Compare 
Results

Dimensionality 
Reduction 

Using 
Latent 

Semantic 
Analysis

Label 
Encoding

Extreme 
Gradient 
Boosting

Models 
Features 

Enhancement

Data 
Normalization 

(Min-Max 
normalization)

Fig. 2. Framework of the proposed methodology

Machine Learning Models

The dataset is now further split based on 70:30 
ratios. On the train data, several models namely are 
applied. After Training the models on train data, 
the models are tested and WQI values are predicted. 
Further, the results are compared based on various 
evaluation metrics.

Proposed Methodology

After prediction of Water Quality Index, a new 
hybrid approach is proposed for improved results. 

In this hybrid methodology, after pre-processing 
of data, Laten Semantic Analysis is applied. Latent 
Semantic Analysis is used for Dimensionality reduc-
tion, which will further enhance the features or 
parameters of water i.e., BOD, COD, pH and Tempe-
rature. Latent Semantic Analysis works on the 
principle of Singular Vector Decomposition (SVD). 
It is applied to numerical parameters that involves 
leveraging the technique’s ability to identify and 
enhance latent patterns, leading to a more informa-
tive feature representation. This enhanced represen-
tation can contribute to better insights and improved 
performance in prediction tasks. To ensure consis-
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tency in scale, the numerical data undergoes norma-
lization before the application of Latent Semantic 
Analysis (LSA). Normalization is a critical step to 
enhance the effectiveness of LSA. Subsequently, 
Singular Value Decomposition is implemented on 
the term-document matrix. Following SVD, only 
the top k singular values and their corresponding 
columns in U and V matrices are retained. This 
selective retention reduces the dimensionality of the 
data while preserving the most. The working of LSA 
is represnted in Fig.3.

Fig.3. Process of Latent Semantic Anlaysis
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In this, the reduced U matrix serves as a transformed 
representation of the original features, capturing 
latent semantic relationships between them, thus, an 
enhanced set of features is created that encapsulates 
the underlying structure and relationships within the 
numerical data. These features may highlight latent 
patterns or relationships in the numerical data that 
were not apparent in the original feature set. After 
feature enhancement, the data is reconstructed by 

multiplying the reduced U, Σ, and V^T matrices. The 
reconstructed matrix represents an approximation of 
the original data with the enhanced features [20-22].

Therefore, the improved features obtained through 
Latent Semantic Analysis (LSA) can be utilized for 
the subsequent training of Extreme Gradient Boos-
ting which is an ensemble learning technique and 
constructs a robust predictive model. The mathema-
tical model behind the XGBoost involves the itera-
tive addition of weak learners to the ensemble while 
optimizing an objective function as shown in fig 4.

Fig.4. Working of Extreme Gradient Boosting

x, y

Result

...

...

Tree 1 Tree 2 Tree n

f1 f2 fn-1

nŷ = Σk = 1 fk (x)

The objective function is the sum of the loss function 
over all training instances and a regularization term 
as depicted in Fig. 4. The dataset with enhanced 
features (X_enhanced) is splitted. An XGBoost 
model is initialized with parameters like the objec-
tive (classification), number of boosting rounds (n_
estimators), maximum tree depth (max_depth) and 
learning rate [23-25].

Pseudocode of the proposed approach

Algorithm1: For WQI and Class Assignment

Input: A numerical dataset represented as a matrix X havingn parameters 
𝑶𝒖𝒕𝒑𝒖𝒕: 𝑾𝑸𝑰, 𝑻𝒂𝒓𝒈𝒆𝒕 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒚 (𝒄𝒍𝒂𝒔𝒔)

Step 1: Read the matrix f 
matrix = read_csv(“sample matrix.csv”)

Step 2: Handle missing values 
X_processed = handle_missing_values(matrix)
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Input: A numerical dataset represented as a matrix X havingn parameters 
𝑶𝒖𝒕𝒑𝒖𝒕: 𝑾𝑸𝑰, 𝑻𝒂𝒓𝒈𝒆𝒕 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒚 (𝒄𝒍𝒂𝒔𝒔)

Step 3: Calculate Sub Index sub_index_values calculate_sub_index(X_processed

Step 4: Calculate Water Quality Index (WQI) based on sub-indexwqi_values = calculate_wqi(sub_index_values)

Step 5: Assign class labels based on standard WQI val class_labels = assign_class_labels(wqi_values) Function

Function handle_missing_values(X): # Handle missing values (emedian)  
X_processed = impute_missing_values(X) return X_processed

function calculate_sub_index(X): sub_index_values = (Normalized Value*Weight) return sub_index_values

function calculate_wqi(sub_index_values):

∑ 𝑆𝑢𝑏 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐸𝑎𝑐ℎ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

return Wqi_values

function assign_class_labels(wqi_values) # Assign class labels values 
           class_labels = classify_wqi(wqi_values) 
                   return class_labels

Algorithm 2: Hybrid Approach and Class Assignment for unknown parameters

Input: Assume a numerical dataset represented as a matrix X having parameters and a Class label y 
Output:Target Varible y (class)for unknown parameters

Step 1: Read the matrix 
matrix = read_csv(“matrix1.csv”)

Step 2: Pre-processing and Normalize the data X_normalized = normalize(matrix)

Step 3: Apply Singular Value Decomposition (SVD) 
U, Sigma, Vt = svd(X_normalized)

2.1. Step 4: Choose the number of components (k) to retain 
k = choose_k()

2.1. Step 5: Retain the top k components 
U_k = U[:, :k] 
Sigma_k= Sigma[:k] Vt_k = Vt[:k, :]

2.1. Step 6: Feature enhancement 
X_enhanced = U_k * Sigma_k * Vt_k

Step 7: Split the data into training and testing sets  
X_train, X_test, y_train, y_test = train_test_split(X_enhanced, y, =42)

Step 8: Initialize and configure the XGBoost model  
xgb_model = XGBClassifier 
(objective=’binary:logistic’, num_rounds=100, max_tree_depth=3, learn_rate=0.1, sampling_rate=0.7, tree_cols-
ample=0.7, seed_value=42 )

Step 9: Train the XGBoost model on the training data  
xgb_model.fit(X_train, y_train)
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Input: Assume a numerical dataset represented as a matrix X having parameters and a Class label y 
Output:Target Varible y (class)for unknown parameters

Step 10: Make predictions on the test set y_pred = xgb_model.predict(X_test)

Step 11: Evaluate the performance of the model accuracy = accuracy_score(y_test, y_pred) precision = precision_score (y_test, 
y_pred) recall = recall_score(y_test, y_pred)

Step 12: Predict for new parameters Class_label= label_class(parameters)

Table 3. Various parameter of water pollution at 
9 locations of Yamuna River Delhi in March 2023

Location
Location_ 

Represented 
As

pH COD(mg/l) BOD
(mg/l)

DO 
(mg/l)

Palla L1 8.3 8 2 9.0

Surghat L2 8 12 2.5 3.8

Khajori Paltoon L3 7.9 112 28 NIL

Kudesia Ghat L4 7.8 80 24 NIL

ITO Bridge L5 8.1 72 24 1.3

Nizamaadin 
Bridge L6 8.0 72 23 1.2

Agar Canal 
(Okhla) L7 7.9 96 32 NIL

Shahdara Drains 
(Downstream 
Okhla Drain)

 L8 7.8 112 36 NIL

Agra Canal L9 8 96 30 NIL

WQI is computed by considering these parameters. 
The reference values for Wi and Qi for the Yamuna 
River are obtained from the Central Pollution Control 
system, as outlined in Table 4. The minimum and 
maximum values for the nine locations, according 
to the CPCB, are presented in Table 5. Utilizing 
these parameters, the WQI is computed and 
presented below.

Table 4. Standard values of various water 
quality parameters

S.No Parameter Standard Value Weighted Value
1. pH 6.5-8.5 0.2272

2. COD 0-3 0.0077

3. DO 5 0.3862

4. BOD 3 0.3213

3. Implementation

The primary intent is to evaluate quality of water by 
considering multiple parameters in the proximity of 
industrial areas and along the course of the Yamuna 
River in Delhi. samples from various points along 
the river were collected, with a specific emphasis 
on locations near industrial establishments. The 
gathered water samples undergo comprehensive 
analysis for key water quality parameters. Following 
the data collection and analysis phase, the WQI is 
computed [26-27]. Subsequently, various machine 
learning models are employed to further refine 
the WQI calculations. Additionally, a novel hybrid 
approach incorporating Latent Semantic Analysis 
(LSA) and the XGBoost machine learning model is 
proposed to enhance predictive accuracy.

To ensure a robust dataset, information is sourced 
from the Central Pollution Control Board (CPCB), 
a governmental body, encompassing different loca-
tions within the Delhi región [26]. The data spans 
nine distinct regions or areas, denoted as L1 to L9, 
and covers four essential parameters for the years 
2013 to 2021[27]. This meticulous approach allows 
for a comprehensive understanding of variations 
across the specified regions and parameters, facilita-
ting a nuanced analysis of the environmental dyna-
mics in this critical area. The Sample data given by 
the authority in image form which was converted 
into excel/csv format for further processing as 
presented in Table 3.
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Table 5. Lowest and Highest values of 9 loca-
tions of Yamuna River

Location
pH COD BOD DO

Min Max Min Max Min Max Min Max
L1 6.7 8.6 1 6 1 14 3.9 9.6
L2 7.3 8.5 1.2 6.7 2.5 11 4.6 14
L3 6.6 7.4 1.6 7.2 8 10 1.9 8.3
L4 7.2 7.5 1.4 6.8 34 38 0.3 1.6
L5 7.4 7.6 2 6.5 26 62 0.3 1.8
L6 7.3 8 2.1 6.3 22 48 0.3 3.2
L7 7.4 7.9 2.3 6.9 22 56 0.3 2.9
L8 7.4 8 1.9 7 38 83 0.3 2.2
L9 7.3 8.1 2.0 7.1 37 76 0.28 2.1

Fig 5. Box plots for all the water quality 
parameters

Figure 5 illustrates the Box plot representing various 
parameters. Upon thorough analysis of the Box plot, 
it is evident that L1 and L2 exhibit the most favo-
rable water quality parameters. While Location 1 
(Palla) displays slightly elevated COD levels, all 
other parameters conform to standard observations. 
Conversely, at Location 2, COD levels are higher 
compared to L1. In contrast, Location 3 exhibits the 
least favorable water quality parameters among all 
locations, featuring a pH value below the standard 
threshold of 7.5, no recorded Dissolved Oxygen, an 
average BOD of 55.3, an average COD of 134, and a 
maximum COD value of 198.

In comparison, Location 8 and Location 9 demons-
trate relatively superior water quality parameters 
when contrasted with Location 4, Location 5, and 
Location 6. The authors calculated the Water Quality 
Index for each location from 2013 to 2021 based on 
these four parameters, using equations 1, 2, 3, and 4. 
The average values of WQI for each year are calcu-
lated, and Table 6 presents the average WQI based 
on the year for each location. To facilitate better 
comprehension and analysis, a bar graph and box 
plot are provided in Fig.6.

Table 6. Average WQI for 8 years for all locations

Year
LOCATIONS

L1 L2 L3 L4 L5 L6 L7 L8 L9

2013 38.53 32.91 776.42 103.17 62.49 38.68 32.40 44.67 36.94

2014 37.88 30.83 1004.09 110.44 63.64 40.75 34.66 38.24 34.95

2015 31.09 38.31 1062.12 93.18 45.56 44.72 31.17 35.48 27.91

2016 33.00 35.31 741.36 95.42 52.35 36.48 40.96 35.85 32.03

2017 27.67 31.47 824.33 151.54 67.85 26.20 33.14 29.87 29.39

2018 26.56 22.68 517.39 106.71 41.86 27.42 24.96 35.75 29.09

2019 37.62 26.91 350.23 174.14 80.43 29.59 37.45 33.43 40.41

2020 29.81 23.13 425.34 135.34 44.74 31.78 36.99 51.48 35.32

2021 38.78 40.58 504.05 107.32 65.08 50.55 57.70 63.82 37.77

Fig. 6 Bar graphs and line charts representing 
WQI

The examination underscores that the water quality 
in the National Capital Region (NCR) falls short of 
meeting acceptable standards. While there has been 
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a marginal enhancement in water quality post the 
COVID-19 pandemic, it still does not align with 
the prescribed standard value of Water Quality 
Index (WQI). Based on classifications given by table 
2, further classes are grouped into three classes to 
enhance the accuracy as depicted in Table 7.

Table 7. Classification of WQI Range

WQI Range WQI Classification

0-50 1
51-100 2

Above 100 0

For further processing the sample data is prepared 
having 4 parameters and class label as shown in 
Table 8. 

Table 8. Sample data for processing into 
machine learning models

Month Location pH COD BOD DO Quality Class

1/1/2013 L1 7.2 32 3 10.2 Good 1

2/1/2013 L1 7.4 20 2 8.8 Good 1

3/1/2013 L1 7.4 24 2.4 8.5 Good 1

4/1/2013 L1 7.7 32 3 11.5 Poor 2

5/1/2013 L1 7.4 16 2.2 7.7 Good 1

10/1/2013 L1 8 20 2.1 7.7 Good 1

11/1/2013 L1 7.5 16 2.6 9.5 Good 1

Subsequently, the data is normalized, and a scatter 
plot is presented in Fig. 7 to illustrate the correlation 
between the normalized values and the class labels 
across various classes.

Fig. 7. Scatter plot of normalized values for all 
parameters BOD, COD, DO, Ph

These normalized values presented in Fig. 8 are 
subsequently condensed to three components 
through the application of the SVD and LSA model. 
The values for these components are presented in 
Fig.9. Three components are defined as [0,1,2] and 
first five values are shown.

Fig.8. Normalized values for all four water 
quality parameters BOD, COD, DO, pH

0 1 2 3 4 5 6 7

normalized_PH 0.263158 0.368421 0.368421 0.526316 0.368421 0.684211 0.421053 0.578947

normalized_COD 6.200000 3.800000 4.600000 6.200000 3.000000 3.800000 3.000000 3.800000

normalized_BOD 0.153846 0.076923 0.107692 0.153846 0.092308 0.084615 0.123077 0.092308

normalized_DO 0.623762 0.485149 0.455446 0.752475 0.376238 0.376238 0.554455 0.752475

4 rows x 840 columns

Fig. 9. Enhance features obtained after 
applying LSA

0 1 2

0 -0.891675 -0.231559 0.388967

1 -0.891886 -0.287322 0.349263

2 -0.894477 -0.285546 0.344056

3 -0.868946 -0.334442 0.364803

4 -0.897484 -0.294297 0.328498

Then these normalized and reduced values are 
passed to XG BOOST machine learning models for 
further predication
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4. Results

To implement the machine learning model, as 
elaborated earlier, the samples are partitioned into 
three distinct classes. Class 1 signifies good water 
quality, Class 2 denotes poor quality, and Class 0 
indicates water unfit for drinking. In total, we have 
840 samples containing Date, location, pH, DO, 
BOD, COD, and Class label information. Colab, a 
Google Python environment, is employed for file 
reading and applying machine learning models. 
The authors utilized various libraries, including 
NumPy, Pandas, Scikit-learn, and Seaborn for plot-
ting. The dataset consists of 465 records for Class 
1, 199 records for Class 2, and 176 records for Class 
0, displaying a roughly balanced distribution. The 
authors trained the model based on this data.In the 
proposed hybrid approach, all data parameters are 
initially normalized, and Latent Semantic Analysis 
(LSA) is employed for dimension reduction. While 
the authors used four parameters in this instance, 
dimension reduction can be extended to include 
more parameters. Following normalization and 
LSA, the parameters undergo training for machine 
learning models. Various a lg or i thms, s u c h as 
Logistic Regression [28-29], Decision Tree [30], 
Support Vector Machine, Naïve Bayes, and XGBoost, 
are applied, alongside the proposed hybrid method. 
The data is splitted and 10-fold cross- validation is 
implemented across all algorithms. The applied 
models are validated through Precision, Recall, and 
Accuracy metrics. Precision, Recall and accuracy is 
computed using these equations [31-33].

Confusion Matrix for the proposed approach is 
attained in Fig. 10.

Precision
(5)

True Positive

True Positive + False Positive
=

Recall
(6)

True Positive

True Positive + False Positive
=

Accuracy
(7)

Number of Correct Predication

Total Number of Predication
=

Fig.10. Confusion matrix attained for the 
proposed approach

The conclusive outcomes are presented in Table 10. 
Notably, the proposed approach achieves the highest 
accuracy at 0.95 [34]. The results are depicted in 
Fig.11.

Table 10. Comparison of various techniques 
based on evaluation metrics

Algorithm Precision Recall Accuracy/NOR 
Accuracy

Logistic Regression 0.83 0.82 0.83

Decision Tree 0.81 0.82 080

SVM 0.69 0.69 0.70

Naïve Byes 0.68 0.49 0.49

XGBoost 0.84 0.82 0.85

Proposed Method 0.947 0.934 0.95

Precision, Recall, and Accuracy metrics. Precision, 
Recall and accuracy is computed using these equa-
tions [31-33].



Neetu Guptaa, Surendra Yadavb, Neha Chaudharyc

Magna Scientia UCEVA 4(2), 2024

69

Fig.11. The comparison of machine learning models and proposed approach

5. Discussion

In our constant search for innovative and efficient 
approaches in the field of machine learning, we have 
identified a recurring pattern in various researches 
addressing water quality index (WQI) prediction. 
Researches such as Ahmad et al. [6], Sakizadeh 
[9], Gazzaz et al. [11], Parmar and Bhardwaj [35] 
and Adnan et al. [36] have adopted machine lear-
ning methods that use large sets of parameters to 
make these predictions. While this approach can be 
effective in obtaining results, it presents significant 
challenges in practice. In particular, the comple-
xity and cost of implementing systems that handle 
multiple parameters in real time can be prohibitive, 
limiting their applicability in environments where 
economic efficiency is crucial [35].

Given this situation, we have developed a unique 
methodology that significantly simplifies the predic-
tion process. Through data normalization and the 
implementation of latent semantic analysis (LSA) 
for dimension reduction, we have managed to make 
accurate predictions using only four water quality 
parameters. This distinctive approach has allowed 
us to achieve a peak accuracy of 95%, a result that 
not only rivals, but surpasses, the performance of 
the most advanced methods available in the litera-
ture. For example, historical results show that the 

best accuracy obtained by a multilayer perceptron, 
which used ten parameters, was 91%. This compa-
rison highlights not only the superiority of our 
methodology in terms of accuracy, but also its ability 
to optimize water quality prediction models.

Furthermore, our strategy not only focuses on 
improving accuracy, but also addresses the need 
for practical solutions for real-time water quality 
monitoring systems. The reduction in the number 
of parameters required to make accurate predic-
tions opens the door to the implementation of more 
affordable and sustainable systems. Consequently, 
our approach not only contributes to the advance-
ment of knowledge in the field of machine learning 
applied to water quality, but also facilitates the crea-
tion of monitoring tools that are accessible and effi-
cient, thus driving positive change in the way water 
resources are managed and monitored. This deve-
lopment therefore marks a significant step towards 
the integration of more effective monitoring techno-
logies in the environmental field.

6. Conclusion:

This research delves into the intricate nexus between 
water quality, environmental health and ecosystem 
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vitality of the Yamuna River, an essential water 
resource facing serious threats. The alarming levels 
of pollution, predominantly driven by industrial 
discharges and urban waste, underscore the urgent 
need for robust and effective measures to safeguard 
this vital resource. Water quality not only impacts 
aquatic biodiversity but also has direct implications 
on the health of communities that depend on it for 
their livelihoods.

The traditional approach of calculating the Water 
Quality Index (WQI), while critical to understanding 
the current situation, presents significant challenges 
such as time-consuming data collection processes 
and the associated rising financial costs. These limi-
tations can hamper rapid and effective response to 
the water quality crisis. Recognizing these constra-
ints, the study embarks on a pioneering journey into 
the realm of machine learning, a field that presents 
unprecedented opportunities to improve our predic-
tive capabilities in this context.

The proposed hybrid approach, which integrates 
Latent Semantic Analysis (LSA) and Extreme 
Gradient Boosting, emerges as a beacon of innova-
tion. By reducing the dimensionality of the data and 
improving the representation of relevant features, 
this methodology not only streamlines the WQI 
prediction process but also achieves an impressive 
accuracy of 95.2%. This result is a testament to the 
potential of advanced predictive models to address 
the evolving complexities of water quality dynamics.

The major contributions of this work include eight 
years of exhaustive data collection, water quality 
index calculations at critical sites, and the introduc-
tion of a novel hybrid approach that improves our 
understanding of the water status in the Yamuna 
River. Furthermore, this approach sets a precedent 
for future research in this domain by providing a 
model that can be adapted and applied to other threa-
tened water bodies. As we face the challenges of an 
ever-changing environment, this research serves as a 
guiding light, illuminating the path towards sustai-
nable water management and the preservation of 
vital aquatic ecosystems such as the Yamuna River, 
thereby promoting a healthier and more balanced 
future for all.
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